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Abstract
A machine learning model was created to predict the electron spectrum generated by a GeV-class laser wakefield
accelerator. The model was constructed from variational convolutional neural networks, which mapped the results of
secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used
to predict the electron spectrum and to provide an estimation of the uncertainty of that prediction. It is anticipated
that this approach will be useful for inferring the electron spectrum prior to undergoing any process that can alter or
destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic
fluctuations in the laser energy and plasma electron density.
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1. Introduction

Laser wakefield accelerators (LWFAs) generate multi-
GeV electron beams from cm-scale plasma channels using
approximately 100 TW laser pulses[1–6]. The extreme
acceleration gradients of LWFAs, coupled with their relative
accessibility, have led to widespread research and pursuit
of several applications, such as compact light sources[7–10],
generation of bright γ-rays[11] and ultra-relativistic positron
beams[12], and for future particle colliders[13]. Also, the
combination of GeV electron beams and high-intensity laser
pulses allows for the study of fundamental physics such as
strong-field quantum electrodynamics[14–17].
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In LWFAs, the non-linear laser pulse evolution[18,19] and
its effect on the injection and acceleration processes[20–23]

are highly sensitive to the initial conditions and can lead to
significant shot-to-shot variation of the electron beam prop-
erties[24,25]. Recent work on high-stability laser systems and
plasma sources has demonstrated improved stability, with the
observation of few-percent variation in the electron beam
energy and charge over 24 hours of continuous operation[26].
Long-term high-repetition rate operation has opened up the
possibility of using machine learning techniques to model
the sources of electron beam variation and to use closed-loop
algorithms to optimise performance[26–31].

For applications such as the study of the radiation reaction,
knowledge of the pre-interaction electron beam properties is
required to make precise measurements of any changes of
these properties and thereby infer the validity of theoretical
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models[32–34]. The destructive nature of the measurements
necessitates predictable LWFA performance through one of
the following: improved stability; preserving part of the spec-
trum as a reference[33]; or by developing models capable of
producing the electron beam properties from a given shot. In
general, the ability to make predictions of the outputs from
plasma accelerators will be advantageous to many of their
applications.

Previous work in developing machine learning models
for LWFAs has demonstrated the prediction of scalar met-
rics of the electron beam, such as total charge or peak
energy[29–31,35]. However, many applications will require the
prediction of vector properties, such as the spectrum or
the longitudinal phase space, for which neural networks
provide a convenient framework. A densely connected neural
network (DNN) is made of densely connected layers, in
which every input is the weighted sum of all of the outputs
of the previous layer, with the individual weights as free
parameters of the model. A non-linear activation function
(e.g., a sigmoid function) then takes the weighted sum plus
a bias value (another free model parameter) as its argu-
ment and returns an output value. An alternative to deeply
connected layers is a convolutional layer, which performs
convolutions between the input vector and a set of kernels.
Networks using these layers, known as convolutional neural
networks (CNNs), have been shown to be better suitable for
learning meaningful features from natural signals[36]. Further
improvement to the predictive power of neural networks has
been seen when including stochasticity in the outputs of
individual nodes, in an architecture known as a variational
neural network (VNN)[37].

In conventional accelerators, Emma et al.[38] demonstrated
training of a DNN to produce synthetic diagnostic out-
puts that matched the measured outputs for a new unseen
dataset. CNNs have been used to predict X-ray properties
from the post-undulator electron beam spectrum[39], while
ensembles of DNNs have also been used to predict the
electron beam longitudinal phase space and current profile
from non-destructive bending radiation measurements[40].
In this work, we report on the training of an ensemble
of VNNs to model the LWFA-generated electron spectrum
using secondary diagnostics of the laser and plasma condi-
tions. The LWFA ensemble was trained using a subset of
experimental measurements of the electron spectrum with
the remainder used for model validation. Each individual
VNN in the ensemble was trained with a different subset
of the training data, so that the ensemble provided both
a mean prediction and an estimate of its uncertainty. The
model also reveals the extent to which the measurements
obtained from the available diagnostics are predictive of
the accelerator performance, and which parameters have the
strongest influence.

2. Experimental methods and results

The experiment was performed using the Gemini laser
system at the Central Laser Facility in the UK (see Figure 1
for details). Laser pulses with an energy of EL = (6.6±0.5) J
and a pulse duration of approximately equal to 50 fs were
used to drive a GeV-scale LWFA. The pulses were focused
with an f /40 off-axis parabolic mirror to a spot size of
(50±2) × (45±2) μm in the horizontal (polarisation)
and vertical planes, respectively, giving a peak intensity
of (5.5±0.5) × 1018 W cm−2. The focus was aligned to a
gas jet that was composed of a mixture of 2% nitrogen and
98% helium, enabling ionisation injection[41–44]. The gas jet
had an average electron density of (1.00±0.07)×1018 cm−3

over a 17 mm length.
The LWFA-generated electron energy spectrum dW/dE

was measured using the spectrometer scintillator screen
images, which were energy-calibrated by numerical tracking
of electron trajectories in the magnetic field. The interferom-
etry and top view cameras were used to extract the electron
density profile, ne(z), and the laser scattering profile, SL(z),
respectively, where z is the laser propagation axis. A 2D
Gaussian fit was performed on the far-field image to obtain
six parameters: the peak fluence I0; the centroids x0 and y0;
the major and minor root-mean-square (RMS) spot widths
σa and σb; and the angle of the major axis of the ellipse
with x-axis θ . Due to the aberrations and clips caused by this
beam-line, this far-field is not an exact replica of the main
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Figure 1. Illustration of the experimental setup (not to scale). The primary
laser focus was aligned to the front edge of a supersonic gas jet emitted from
a 15 mm diameter nozzle positioned 10 mm below the laser pulse propaga-
tion axis. The input laser energy was measured by integrating the signal
on a near-field camera before the compressor, which was cross-calibrated
with an energy meter and adjusted for the 60% compressor throughput. The
scattered laser signal was observed from above by an optical camera, and the
plasma channel electron density profile was measured using interferometry
with a transverse short-pulse probe laser. The small (� 0.1%) transmission
of the focusing laser pulse through a dielectric mirror was directed onto a
CCD camera to obtain an on-shot far-field image. Electron beams from the
LWFA were deflected by a magnetic dipole onto two Lanex screens (only
the first is shown here), which were used to determine the electron spectrum
in the range of 0.3 < E < 2.5 GeV.
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laser focus, but is representative of the shot-to-shot focal spot
fluctuations.

The experimental results for this analysis were taken from
an investigation of the radiation reaction, in which a sec-
ond counter-propagating laser pulse is used to collide with
the LWFA electron beam. For training and validating our
predictive tool, we wish to only use shots where the laser
pulse did not significantly overlap with the electron beam, so
that the electron spectrum was not affected. For successful
collisions, a gamma-beam was generated via the inverse
Compton scattering interaction and was diagnosed spatially
with a CsI scintillator array[16] imaged onto a 1024 × 1024
pixels charge-coupled device (CCD).

Due to the shot-to-shot variation in the electron beam
position, most shots did not result in a significant collision,
providing a large number of null shots for model training
and testing. The brightness of the signal on the gamma
detector was used to provide an approximate metric of the
collision intensity. The 99.99th percentile pixel value of the
background subtracted CCD image was taken as the peak of
the gamma signal Cγ . The highest value of this metric was
Cγ = 4380, whereas the median value was Cγ = 12. From
analysis of the collision statistics, a value of Cγ ≤ 100 was
estimated to result from collisions with a peak normalised
vector potential of a0 < 1.4. For 1 GeV electrons, this would
result in a less than 1% energy loss[14], approximately equal
to the resolution of the spectrometer. Therefore, this value
was taken as a threshold for null shots, for which the electron
beam is unaffected by the collision. The experimental data
were taken during a 5-hour period with a total of 779 shots.
Model training and validation datasets were taken from shots
for which Cγ ≤ 100, with 90% (570 shots) used for training
and 10% (75 shots) reserved for model validation.

3. Neural network architecture and training

The measurements of ne(z), SL(z) and dW/dE were stored
as 1D vectors of lengths 310, 100 and 200, respectively.

Although each of these signals is composed of at least
100 values, the variations over the full dataset are limited,
and so in principle only a few parameters are required for
each to encode these variations. An appropriate decoder
would be able to generate a good approximation to the
measured signals from this reduced set of parameters, which
are called latent space variables. In this work, variational
autoencoders (VAEs)[45,46] incorporating convolutional and
densely connected layers were trained, as illustrated in
Figure 2. By using a bottleneck of only a few nodes,
the VAEs were trained to find an optimal latent space
representation of the data, which allowed the decoder to
reconstruct the measured signals.

The trained encoders for ne(z) and SL(z) were used to
encode their respective measurements to their latent space
representations, which were then combined with measure-
ments of the laser far-field and the laser energy to create
the inputs for the predictive model. A VNN, which we call
the translator network, takes those inputs and returns values
that are passed to the trained electron spectra decoder to
generate the predicted spectrum. The translator was trained
to learn the correlation between the reduced input set and the
latent variables of the electron spectra decoder, as illustrated
in Figure 3.

For the variational layers, two parameters are calculated
for each node that represent the expectation value μm and
standard deviation σm. During training, values were sam-
pled from Gaussian distributions given by these parameters,
N (μm,σm), such that the latent values for a given input set,
xm, would vary according to σm.

The training loss function used was as follows[45]:

LT = LMSE −βDKL,

LT = 1
N

N∑

n=0

[W (En)−WR (En)]2 −βDKL, (1)

where DKL = ∑M
m=0

[
1+ log(σm)−μ2

m −σm
]
/(2M) is the

Kullback–Leibler (KL) divergence, LMSE is the mean

Figure 2. Variational autoencoder (VAE) architecture for determining the latent space representation of the diagnostics. The type and dimension of each
layer are indicated in the labels. The inset plots show an example laser scattering signal SL and the approximation returned by the VAE. The input (and
output) size Ni is equal to the data binning of the results for each individual diagnostic. Max pooling was used at the output of each convolution layer, which
combined neighbouring output pairs and returned only the maximum of each pair. The average signal, in this case 〈SL〉, was passed as an additional latent
space parameter for the encoder and was used to scale the output of the decoder. The autoencoder structure was the same for each diagnostic, except for the
size of the latent space.
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Figure 3. Diagram of the translator network architecture. Shown in the
inset is an example measurement from the experimental data (black), with
the mean prediction of the LWFA model ensemble (red) and individual
model predictions (pink).

squared error (MSE) and M is the total number of input sets
in a given training iteration. The same loss function was used
to train each VAE and also the final translator VNN, with the
MSE taken between the predicted and measured diagnostic
output (ne(z), SL(z) or dW/dE). The β parameter was used to
scale the relative importance of the regularisation, following
the beta-VAE approach[45]. During model validation, only
the mean weights for the variational layers were used and the
DKL term from Equation (1) was omitted. Every node of the
neural networks used the leaky rectified linear unit (leaky-
ReLU)[47] activation function with α = 0.3, which exhibited
superior learning performance in comparison to sigmoid and
hyperbolic tan functions, as well as leaky-ReLU with other
values of α.

For the diagnostic VAEs, the number of latent parame-
ters was chosen to be the minimum that gave high-fidelity
reconstructions, with the β parameter manually tuned to
ensure that the distribution of each latent parameter for the
training datasets was close to a standard normal distribution
(N (0,1)). One latent space parameter was directly set as
the average of the input signal (normalised by the training
dataset). This parameter was then used to scale the decoder
output and ensured that one of the latent space variables
represents the amplitude of the signal, aiding interpretation
of the trained networks. Once the VAEs were trained, the
weights were frozen during the translator training process.

The translator is a DNN with a variational last layer. The
translator VNN architecture (number of nodes and number
of layers) and the value of β were optimised using a genetic

algorithm. During this process the training data were divided
in two parts, with 50% of the data used to train each
network and the other 50% used to calculate the test loss.
This ensured that the validation dataset was kept purely for
validation of the final model performance and not used in any
tuning of the predictive model. The optimal architecture for
the translator network, shown in Figure 3, comprises three
densely connected layers, with a final variational layer with
five outputs.

In order to quantify the uncertainty in the model pre-
dictions, 100 translator VNNs were trained, each using
randomly selected 50% samples of the training dataset. The
prediction of each of these models can then be used to obtain
an average prediction, while the variation between model
predictions is indicative of the random uncertainty and the
finite size of the training data. In particular, the random sub-
sampling affects the predictive quality in regions where the
training data are sparse, typically at the extremes of the input
parameters, resulting in a larger uncertainty in those regions.

The parameters for the trained VAEs and translator net-
works are summarised in Table 1. Each autoencoder was
trained for 1000 iterations with a batch size of 64. The
translator network was trained in three stages with 200, 400
and 300 iterations performed at 10, 4 and 1 times the final
β value to balance reconstruction fidelity with latent space
smoothness[46]. The training processes were all performed
using the Adam optimiser[48], with a learning rate of 10−3,
which was found to converge well.

4. LWFA prediction results

The measured electron spectra from the validation dataset
are shown in Figure 4(a), along with the reconstructions by
the electron spectra VAE (Figure 4(b)) and the average of
the LWFA model ensemble predictions (Figure 4(c)). The
electron spectra VAE had an MSE of 0.011, and shows good
qualitative and quantitative reproduction of the measured
electron spectra. This indicates that the five parameters of
the latent space, in combination with the structures learnt
by the decoder, are sufficient to accurately generate the set
of observations from the validation dataset. In other words,
the five latent parameters are sufficient to generate the full

Table 1. Summary of autoencoder parameters used for each diagnostic and for the translator model.

Model Ni NL β Validation LMSE

Density profile 310 4+1 2×10−3 1.7×10−3

Scattering profile 100 5+1 10−3 2.3×10−3

Electron spectra 200 4+1 2×10−3 1.1×10−2

LWFA single 18 5 a5×10−4 (7.3±0.5)×10−2

LWFA ensemble 18 5 a5×10−4 5.7×10−2

aFor the LWFA translator models, the value of β varied from high to low during the training, with the final value
given in the table. The training time for each autoencoder was 10 minutes and training of the 100 translator networks
took a total of 3 hours, using an Intel Xeon Gold 6130 CPU at 2.1 GHz with 32 GB of RAM. The analysis and model
training were performed on CLF Data Analysis as a Service (CDAS)[49]. The neural networks were built using the
Keras API (https://keras.io).

https://keras.io
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Figure 4. (a) Measured electron spectra and reproduced electron spectra
using (b) the trained variational autoencoder and (c) the mean prediction of
the ensemble of the LWFA models. The individual shots are sorted by cut-
off energy, determined as the highest energy for which the spectra exceed a
threshold value.

variability of electron beams for this experimental setup.
The question is then whether the secondary diagnostics
are sufficient to determine the correct latent variables for
each shot and thereby give an accurate prediction of the
electron spectrum. The mean prediction of the LWFA model
ensemble had an MSE of 0.057 and shows a similar trend in
cut-off energy to the data, except for the few high- and low-
energy outliers. By comparison, a naive prediction that all
measured spectra are equal to the average spectrum from the
training dataset gives an MSE value of 0.11, indicating that
the LWFA model has a significant predictive capability.

Individual predictions of each model of the LWFA ensem-
ble, along with the corresponding measured electron spectra,
are shown in Figure 5. The variation in model predictions
for a given shot is indicative of the uncertainty, due to the
random sub-sampling of the training data and the stochastic
training process. For a large region of the parameter space,
the LWFA model predictions show a good agreement with
the measurements, with large discrepancies occurring for
the outliers in terms of cut-off energy. These shots also
exhibit the largest variation in predictions between individual
models within the ensemble. The total electron beam energy
is reasonably accurately predicted, with relative RMS error
of 12% for the entire validation dataset, compared to the
relative beam energy RMS variation of 30%.

The relative influence of each input parameter on the
LWFA model can be seen by varying each one in turn and
measuring the effect on the resultant spectrum, as shown in
Figure 6. The plasma density parameters have a relatively
modest effect on the electron spectrum, indicating that the
shot-to-shot variation of the plasma density profile is not
the dominant contributor to the electron spectrum variation.
Variations of the laser energy and the scattering profile are
more significant, having the greatest effect on the generated

Figure 5. Individual shots selected at equally spaced intervals of the sorted
shot index from Figure 4. The measured spectra (black) are shown alongside
the predictions of each LWFA model from the trained ensemble (red) and
an individual spectrum measurement closest to the median of the training
data (blue). The sorted shot index is shown in the top right of each panel.

Figure 6. Relative influence of the translator VNN input parameters on the
predicted electron spectra. Each parameter is set to the mean value of the
training dataset and then varied over ±3 standard deviations in 11 steps,
with the variation in the spectrum quantified by the average RMS change
to the spectrum. The nth latent space parameters for the scattering and
density profile encoders are labelled SL(n) and ne(n), respectively. Here,
SL(6) and ne(5) are proportional to the average laser scattering signal and
plasma electron density, respectively.

electron spectra. The spatio-temporal distribution of the laser
pulse is only indirectly diagnosed from the far-field diagnos-
tic and the effect on the scattering profile, and is known to
have a large influence on the accelerated electrons[26,28,29].
Including additional laser diagnostics, such as measurement
of the spatial phase profile[26,30], should enable higher fidelity
predictions.

Although many of the input parameters are not straight-
forward to interpret physically, that is, those that are the
latent space of the autoencoders, the laser energy is a
physically important parameter in LWFAs. In practice, the
inputs for the LWFA models are not independent of one
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Figure 7. The model predicted effect of varying the laser energy on (a)
the predicted electron spectra and (b) the total electron beam charge. The
data for each shot in the training data (red) are shown in (b), overlaid from
the values calculated from the predicted spectra of the LWFA model (black
points) with a linear fit (black dashed line).

another, as characterised by calculating the Pearson cor-
relation coefficients for the training dataset. This reveals
relatively strong correlations between the laser energy and
several other parameters, especially SL(3), SL(4), SL(6),
ne(4), ne(5) and I0, which had correlation coefficients rang-
ing from r = 0.31 to r = 0.55. The trained LWFA model
is then able to show what effect laser energy fluctuations
have on the electron spectrum by varying each parameter
proportionally according to their correlation coefficients
with laser energy EL, as shown in Figure 7(a). As the laser
energy increases, the peak electron energy is relatively con-
stant, while the overall charge increases. The total electron
beam charge QB is plotted as a function of laser energy in
Figure 7(b), for both the raw data and the LWFA model
predictions. The model prediction shows an approximately
linear increase with laser energy with the equation QB [nC] =
0.48EL [J]−2.1.

The scaling parameters SL(6) and ne(5) are also easy
to interpret, as they are the average scattering signal and
electron density, respectively (normalised to the mean and
variance over the training dataset). The effect of ne(5) on the
electron density profile and the predicted electron spectrum
is shown in Figure 8. The average plasma electron density
varied by 4% over the training dataset, as illustrated by
the small perturbations to the density profile observed in
Figure 8(a). A more significant effect is seen on the electron
spectra in Figure 8(b), with the peak energy shifting higher
as the average density drops, as expected for a dephasing-
limited LWFA[50,51]. The effect on the spectrum is much
smaller than that seen to be caused by the laser energy
variation in Figure 7. This indicates that the level of natural
variations of the plasma electron density in this dataset was
sufficiently low that it was not a dominant contributor to the
shot-to-shot variations in the electron spectra.

Figure 8. The effect of changing ne(5) on (a) the electron density profile
and (b) the predicted electron spectrum. All other latent space parameters
are kept fixed at zero (i.e., their average values from the training dataset),
while ne(5) is varied over the range of ±3 standard deviations in the training
dataset.

Figure 9. The effect of changing SL(3) on (a) the laser scattering profile
and (b) the predicted electron spectrum. All other latent space parameters
are kept fixed at zero (i.e., their average values from the training dataset),
while SL(3) is varied over the range of ±3 standard deviations in the training
dataset.

The other latent parameters generated by the VAEs do not
have straightforward physical interpretations and only have
meaning in combination with the trained encoders. In order
to gain some insight into their physical meaning, the effect of
changing each parameter can be observed on the correspond-
ing diagnostic output, as well as on the predicted electron
spectrum. An example is shown in Figure 9, where the effect
of varying SL(3), the most dominant input parameter to the
translator VNN, is shown.

Figure 9(a) shows that positive SL(3) correlates with an
increased laser scattering peak at the entrance to the gas
jet (z = 0) and for the last half of the plasma, while sup-
pressing the signal for 1 > z > 7 mm. This also results in
an increased predicted total charge as well as an increased
predicted maximum electron energy (see Figure 9(b)), a
clearly beneficial effect for many applications. The scattered
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laser intensity is associated with Raman side-scattering and
wavebreaking radiation, generated as the laser self-guides
and self-compresses to a high peak intensity in the plasma
channel[52,53]. Therefore, the increase of this scattering signal
seen in Figure 9(a) indicates an increased possibility for
the injection of electrons into the plasma wakefield at z =
0 mm, while maintaining a high amplitude plasma wave
for z>7 mm, resulting in the enhanced electron spectrum
predicted in Figure 9(b).

5. Conclusion

In conclusion, we have constructed and trained a predictive
model for an LWFA that is capable of predicting the electron
spectrum for a given shot, based on secondary diagnostics of
the laser and plasma conditions. The model is constructed
from separately trained variational convolutional autoen-
coders, with a VNN used to map a reduced parameter set to
the latent space of an electron spectra decoder. An ensemble
of models was trained on subsets of the training data, with
the range of model predictions providing an estimate of the
uncertainty. The predictive model ensemble performs better
than the naive assumption that the electron spectrum is con-
stant, and so has utility in estimating the electron spectrum in
the case of destructive processes, such as a radiation reaction.
The model fidelity is most likely limited by the lack of
on-shot spatio-temporal information about the laser pulse,
which is known to have a strong influence on the accelerated
electron beam[26]. It is expected that this technique can be
improved by including additional diagnostics of the laser
spatial and spectral phase, and by increasing the size of
the training dataset, especially for reducing the prediction
error for the outliers. Further diagnostics of the laser–plasma
interaction, such as spectrally resolving the scattering signal,
may also provide additional information to improve the
prediction accuracy. Neural networks of this kind could
be an important tool for understanding the performance
sensitivities of plasma accelerators, and also in providing
synthetic diagnostics for applications of their electron beams
and secondary sources.

Data availability

The data and code for this publication are available from the
online repository zenodo.org at https://zenodo.org/record/
7510352#.Y9K2XezP30o.
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